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Direct numerical simulations of the incompressible Navier–Stokes equations are
employed to study the turbulent wall-shear stress in a turbulent channel flow forced by
lateral sinusoidal oscillations of the walls. The objective is to produce a documented
database of numerically computed friction reductions. To this aim, the particular
numerical requirements for such simulations, owing for example to the time-varying
direction of the skin-friction vector, are considered and appropriately accounted for.

A detailed analysis of the dependence of drag reduction on the oscillatory
parameters allows us to address conflicting results hitherto reported in the literature.
At the Reynolds number of the present simulations, we compute a maximum drag
reduction of 44.7%, and we assess the possibility for the power saved to be higher
than the power spent for the movement of the walls (when mechanical losses are
neglected). A maximum net energy saving of 7.3% is computed.

Furthermore, the scaling of the amount of drag reduction is addressed. A parameter,
which depends on both the maximum wall velocity and the period of the oscillation,
is found to be linearly related to drag reduction, as long as the half-period of the
oscillation is shorter than a typical lifetime of the turbulent near-wall structures.
For longer periods of oscillation, the scaling parameter predicts that drag reduction
will decrease to zero more slowly than the numerical data. The same parameter also
describes well the optimum period of oscillation for fixed maximum wall displacement,
which is smaller than the optimum period for fixed maximum wall velocity, and
depends on the maximum displacement itself.

1. Introduction
A number of recent papers have shown that wall-bounded turbulent flows, both

in the planar and cylindrical geometry, exhibit interesting modifications when cyclic
surface motions are imposed in the spanwise direction, or when an oscillating spanwise
pressure gradient is applied. This emerges from numerical studies based on the direct
numerical simulation (DNS) of the incompressible Navier–Stokes equations, as well
as from laboratory experiments. In the group of numerical papers, we mention the
first work on the subject by Jung, Mangiavacchi & Akhavan (1992), and the extension
of the results from the plane channel flow to the pipe flow by Quadrio & Sibilla
(2000). Among the experimental studies, we recall the first investigation by Laadhari,
Skandaji & Morel (1994) and the study by Choi (2002). Karniadakis & Choi (2003)
discussed the properties of the oscillating wall in connection with related flow
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modifications, such as for example the use of a spatially or temporally oscillating
spanwise-oriented Lorentz force in the near-wall region of a turbulent flow of an
electrically conducting fluid, described by Berger et al. (2000), and the excitation of
the flow with transverse travelling waves presented by Du, Symeonidis & Karniadakis
(2002).

Perhaps the most interesting and practically appealing among the effects of the
oscillating wall on turbulent flows is the significant reduction of the mean streamwise
wall friction, first reported by Jung et al. (1992). Despite the studies available in
the literature, there are a number of issues related to the drag-reduction properties
of the oscillating wall that have not yet received a definite answer. These issues,
which are important both from a fundamental and an applicative point of view, are
reviewed briefly in § § 1.1, 1.2 and 1.3. We also mention an additional problem, which is
relevant to an eventual practical application of the oscillating wall as a drag-reducing
technique: the dependence of the drag reduction on the Reynolds number of the flow.
This topic is not addressed in the present work.

1.1. Maximum drag reduction

The available data in boundary layers and channel flows, collected at relatively low
values of the Reynolds number, indicate that the oscillation of the wall causes a
significant decrease of the mean level of the turbulent skin-friction compared with the
value over a fixed wall, even though it is not capable of relaminarizing the turbulent
flow. However, it appears that the exact value of such an important quantity as the
maximum drag reduction has not yet been assessed. Jung et al. (1992), Baron &
Quadrio (1996), Choi, DeBisschop & Clayton (1998), Nikitin (2000), Quadrio &
Sibilla (2000), J.-I. Choi, Xu & Sung (2002) and Choi (2002) have reported that
reductions of 40% or more can be reached by proper choices of the parameters of the
wall oscillation. On the other hand, Skandaji (1997) (whose work was also published
in Laadhari et al. 1994), Trujillo, Bogard & Ball (1997) and Choi & Graham (1998)
have indicated lower maximum drag-reduction values, namely 35%, 27% and 25%,
respectively. It is puzzling to observe that numerical investigations agree on indicating
larger drag reductions than those predicted by laboratory experiments.

1.2. Net energy saving

A second open issue concerns the global energetic balance of the oscillating wall
as a drag-reduction technique. Since external power is required to move the wall
against the viscous resistance of the fluid, it is important to determine the parameters
of the oscillation yielding the best overall performance, considering both energetic
costs and benefits, and to verify whether this technique can lead to a net gain, at
least in an idealized situation when the mechanical losses of a real oscillating device
are neglected. A similar energy budget was evaluated by Berger et al. (2000) for the
aforementioned Lorentz force technique. They showed that the power required to
generate the magnetic force is approximately one order of magnitude larger than the
power saved owing to the reduced friction drag, when closed-loop control schemes
are considered. Furthermore, for open-loop control schemes, which are more directly
related to the movement of the wall considered in the present work, they found that
the balance is extremely unfavourable. Indeed, the ratio between the power required
to generate the force and the power saved was O(1000) for that case. On the contrary,
studies on the oscillating-wall technique present more promising results. Baron &
Quadrio (1996) for a plane channel flow and Quadrio & Sibilla (2000) for a pipe
oscillating about its axis have indicated that the power saved and the power required
for the movement of the wall may be of the same order of magnitude, thus suggesting
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the possibility of a positive net energy balance for certain values of the oscillation
parameters. These results, however, were obtained from preliminary computational
studies, certainly affected by the limited spatial and temporal discretization. No
definite conclusion concerning the very existence and extent of a region of positive
energy balance in the parameter space can thus be drawn to date, although these
results indicate a possible global energy benefit.

1.3. Scaling of drag reduction

General agreement is also lacking on the scaling of drag reduction, namely on the
existence of a quantity that is a function of the oscillation parameters, to which
the amount of drag reduction uniquely relates. Trujillo et al. (1997), Choi et al.
(1998), Choi & Graham (1998), Choi (2002) and Karniadakis & Choi (2003) have
suggested that drag reduction depends neither on the maximum peak-to-peak spatial
displacement Dm of the wall, nor on the oscillation period T , taken as independent
parameters, but it scales with the maximum wall velocity Wm = πDm/T . On the other
hand, Jung et al. (1992), Baron & Quadrio (1996), Dhanak & Si (1999), Quadrio &
Sibilla (2000) and Nikitin (2000) have not been able to find a scaling parameter, but
determined the existence of an optimal period of 100–125 viscous time units for fixed
maximum wall velocity. This optimal period has been related to the thickness of the
transversal laminar Stokes layer which maximizes the interaction of the moving wall
with the near-wall turbulent structures.

J.-I. Choi et al. (2002) have addressed the issue of the scaling of drag reduction,
proposing two parameters related to the decrease of the skin-friction coefficient. The
first one is a critical wall-normal distance to which spanwise friction effects diffuse.
This length is defined by means of the Stokes solution for an oscillating laminar
boundary layer, and represents the position where the maximum velocity during the
cycle is higher than a given threshold. Turbulent structures within this distance from
the wall are influenced by the wall oscillation, whereas the effects of the motion are
not felt farther from the wall. The second parameter is the acceleration of the Stokes
layer. Its importance follows from the observation that in a steadily rotating pipe,
where there is no spanwise acceleration, the skin-friction attenuations are smaller, as
pointed out by Quadrio & Sibilla (2000), who compared their results for an oscillating
pipe with those by Orlandi & Fatica (1997) for a steadily rotating pipe. The amount
of drag reduction shows some correlation with each of these two parameters, and
the correlation increases when the two quantities are combined in a unique factor.
However, some available experimental data not considered by J.-I. Choi et al. (2002)
(for example the data of Jung et al. (1992) at T + = 200 and T + = 500) appear to be
poorly correlated with the proposed scaling quantity.

1.4. Objective and layout

In this work, we use an incompressible Navier–Stokes equations solver to perform
direct numerical simulations of a turbulent channel flow over spanwise-oscillating
walls. The main objective is to produce a well-documented and reliable database,
which provides a complete map of drag-reduction data versus the parameters defining
the oscillation of the wall, namely the maximum wall velocity Wm, the oscillation
period T and the maximum wall displacement Dm. Our measurements of streamwise
friction from DNS are reported, and emphasis is placed on computational procedures
and error analysis, in order to estimate the measurement error. We then address
the three open questions illustrated above, also capitalizing on the recent analysis
of the initial transient of the flow after the start-up of the oscillation, developed by
Quadrio & Ricco (2003).
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The layout of the paper is as follows. All the numerical issues are discussed in
the following section: the numerical method and the computing system are briefly
illustrated in § 2.1; the adopted spatial and temporal discretization is described in § 2.2;
the computational procedures to calculate the mean value of the friction coefficient
are detailed in § 2.3; validation issues and error estimates are discussed in § 2.4. Drag-
reduction data are presented in § 3, first in terms of maximum absolute savings in § 3.1
and then considering the net power savings in § 3.2. The discussion of these topics in
view of the other data available in the literature, and the issue of their scaling, are
contained in § 4. Lastly, § 5 is devoted to conclusions.

2. Problem definition and numerical issues
2.1. Numerical method and computing system

The computer code used in the present work has been developed by Quadrio &
Luchini (2001), and solves the incompressible Navier–Stokes equations for the
turbulent flow in a plane channel. The equations are written in terms of two
scalar equations for the wall-normal component of the velocity and vorticity vectors,
following a procedure which eliminates the pressure, described for example in Kim,
Moin & Moser (1987). The code is based on Fourier expansions in the homogeneous
directions, and fourth-order-accurate compact finite-differences schemes are used in
the wall-normal direction. Compact schemes offer a discrete differentiation with
resolution comparable with that of spectral schemes (Lele 1992), and at the same
time allowed us to design a numerical method with significant advantages from the
point of view of parallel computing.

The nonlinear terms of the equations are evaluated in a pseudo-spectral way,
and the related aliasing error (in the homogeneous directions) is exactly removed by
expanding the number of Fourier modes by a factor of at least 3/2 before transferring
from Fourier space into physical space. Time integration of the equations is performed
with the classical partially implicit approach, using a third-order low-storage Runge–
Kutta method for the convective terms, and a second-order Crank–Nicolson scheme
for the viscous terms.

Our code is able to exploit the computing power of shared-memory SMP machines,
and connects together multiple machines for distributed parallel computing. An
innovative parallel strategy is adopted so that the communication is reduced to a
minimum: during the computations a global transpose of the data is never required,
thus allowing for the use of commodity networking hardware. The overall amount of
required memory can be subdivided among the computing nodes. When run with a
time-integration scheme that requires one preceding time level (such as the third-order
Runge–Kutta used in the present work), the code requires a storage space of the order
of 5NxNyNz floating-point variables, Nx and Nz being the number of Fourier modes
in the homogeneous directions, and Ny the number of points in the wall-normal
direction.

The numerical simulations described in this paper have been performed on a
dedicated purpose-built computing system, made by 8 commodity SMP Personal
Computers, each equipped with two Intel Pentium III CPU at 733 MHz, with
256 MB RAM and two cheap Fast Ethernet cards. The computing nodes are
connected together in a dedicated ring-like connection topology which avoids any
hubs or switches, and replicates the way data are stored in the machines during the
computations.
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As demonstrated by Kim et al. (1987), the periodic boundary conditions implied by
the Fourier expansions can be adopted in the homogeneous directions, provided the
computational domain is large enough. At the channel walls, the usual no-slip and
no-penetration conditions are applied. The wall boundary condition for the spanwise
(z) component of velocity is:

W = Wm sin

(
2π

T
t

)
,

i.e. the two walls move in phase with a spanwise velocity W which is a sinusoidal
function of time t with prescribed period T and amplitude Wm. For ease of comparison
with previous studies, the calculations are performed at a reference value of the
Reynolds number of Reτ =200, being Reτ based on uτ , the friction velocity in the
uncontrolled case, and on h, half the distance between the channel walls.

2.2. Discretization

The streamwise (x) length of the computational domain is Lx = 21h, and the spanwise
(z) width is Lz = 4.2h. The x-direction is discretized with 321 Fourier modes; 129
modes are used in the spanwise (z) direction, and the number of collocation points
in the wall-normal (y) direction is 129. The spatial resolution in the reference case
is �x+ =13.1, �z+ = 6.5 and �y+ = 0.8 − 5.4 (the + superscript indicates quantities
made dimensionless with inner variables, i.e. with the friction velocity of the reference
case and the kinematic viscosity ν of the fluid). The dimensions of the periodic box
and the spatial resolution are comparable with those currently used in the literature
for similar values of the Reynolds number (see for example, Kim et al. 1987; Moser,
Kim & Mansour 1999). The streamwise extent of the computational box is, however,
significantly larger, since it is known (Orlandi & Fatica 1997) that the near-wall
turbulent structures are more elongated under drag-reducing conditions. The effective
resolution in wall units becomes much higher for the cases with drag reduction, owing
to the significant decrease in uτ .

The total integration time is ttot = 1000 h/UP , where UP is the centreline velocity of
a laminar Poiseuille flow with the same flow rate. This time interval corresponds in
viscous units to t+

tot ≈ 8400, and to ≈ 1250h/Uc where Uc is the mean velocity at the
centreline of the channel. This is significantly longer than the time interval usually
considered for the reliable calculation of low-order turbulence statistics in standard
DNS at similar Reynolds numbers. This value of ttot corresponds to more than 30
wash-out times of the present very long computational domain (the wash-out time is
defined by del Álamo & Jiménez (2003) as t Ub/Lx , where Ub is the bulk velocity).
The statistical sample is further increased by a factor of two by ensemble-averaging
over both walls. The reference case without wall oscillation and the cases with the
largest absolute and net drag reduction (cases 0, 20 and 25 in table 2) are integrated
for a longer time interval, namely 1500 h/UP . The time step used in the computation
is smaller than that imposed by the stability limit of the time-integration scheme, in
order to minimize errors from the temporal discretization. It is set to �t+ ≈ 0.16 for
the reference case, and reduces to �t+ ≈ 0.1 for the cases with large drag reduction.
To improve time accuracy, the calculations are performed in a reference frame which
moves in the streamwise direction at a velocity slightly lower than the bulk mean
velocity of the flow.

2.3. Computational procedures

The equations of motion are integrated in time, always starting from the same
unperturbed flow field as the initial condition, with the main purpose of calculating
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an average value of the wall friction. The longitudinal flow rate is kept constant
during the simulations, allowing the space-averaged longitudinal friction to fluctuate
in time around its time-mean value. A null instantaneous spanwise pressure gradient
is imposed.

The time history of the two components of the wall-averaged friction is recorded
from the simulations. In the post-processing phase, the time histories over the two
walls are combined, and the time average over the maximum available number of
integer multiples of the wall oscillation period is computed after discarding the initial
transient. The oscillating movement of the walls starts at t = 0; the initial conditions
correspond to an unmanipulated flow, which is in statistical equilibrium for the fixed-
wall condition. A certain amount of time is consequently needed for the flow to adapt
to the new boundary conditions and to reach its new quasi-equilibrium state. The
initial transient phase is carefully discarded. This operation is crucial for a reliable
measurement of drag reduction in numerical simulations, where the total integration
time is limited by cost considerations. The early-stage flow regime after the start-up
of the oscillatory motion, and in particular the length of the initial transient, have
been the object of the analysis by Quadrio & Ricco (2003). They determined that
this transient can be non-monotonic, that it presents different durations for different
flow variables, and that the duration strongly depends on the maximum wall velocity
Wm. In the present study, we are not interested in the precise determination of the
duration of the initial transient for the longitudinal friction. Based on a visual case-
by-case observation of the time history, the instant ti where the statistical analysis
can be started is simply identified when an interval significantly longer than the
initial transient has elapsed. While not optimally efficient, this procedure allows us
to safely remove the effects of the initial transient from the time average. For each
computational case, the chosen value of ti is reported in table 2.

2.4. Error estimation

The fundamental quantity measured in our numerical simulations is the friction drag,
quantified by the friction coefficient:

Cf =
2τx

ρU 2
b

,

where ρ is the density of the fluid, τx is the longitudinal component of the shear stress
at the wall, and Ub is the bulk velocity.

The computed value of Cf in the reference simulation at Reτ = 200 is 7.93 × 10−3.
It compares very well (within a 0.4% difference) with the value reported by Kim et al.
(1987), after rescaling to account for their different Reynolds number (Reτ ≈ 180),
and by assuming Cf ∼ Re−0.25

τ . This is a commonly accepted dependence of Cf on
Re, first proposed by Dean (1978). The comparison of our measured Cf with results
from Dean’s correlation is not totally satisfying, with a 3% disagreement, but an
identical disagreement is also present in Kim et al.’s results, and it may well be due
to the non-optimal value predicted by the empirical correlation at low values of the
Reynolds number.

We have tested the sensitivity of the measured value of the friction coefficient
to various discretization parameters. The adopted size of the time step does not
cause any appreciable error in the time-average measure of Cf , as verified in a
number of preceding works and, in particular, for the present numerical scheme, by
Quadrio & Luchini (2003). Additional discretization checks are described in table 1.
We first performed a fixed-wall simulation with less spatial resolution, in a smaller
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Lx/h Lz/h Ny Nx Nz �y+
max �x+ �z+ ttotUP /h 103Cf Error (%)

Case 0 21 4.2 129 321 129 5.4 13.1 6.5 1000 7.93 −
Check a1 4π 4.2 129 161 129 5.4 15.7 6.5 500 7.88 −0.6

Case 25 21 4.2 129 321 129 3.0 7.3 3.6 1000 4.40 −
Check a2 21 4.2 129 513 129 3.0 4.5 3.6 1000 4.37 −0.4
Check b2 21 4.2 257 321 129 1.5 7.3 3.6 1000 4.33 −0.8
Check c2 21 2π 129 321 257 3.0 7.3 2.7 1000 4.37 −0.3

Table 1. Percentage error in the calculation of Cf as a function of the discretization parameters.
Checks are performed for cases 0 (no wall oscillation) and 25 (nearly maximum drag reduction)
described in table 2. The parameters which are different from the base discretization described
in § 2.2 are printed in italics. Data in inner units for case 25 are computed with the actual
friction velocity.

computational domain and for a shorter time interval. This less-resolved simulation,
indicated as check a1 in table 1, is still one of notable computational size, and it has
given a friction coefficient only −0.6% different from that of the reference simulation.

Since it is not immediately evident how the movement of the walls affects the
resolution requirements, one case which yields nearly the maximum drag reduction
(case 25 in table 2) has been the subject of three additional resolution checks,
described as checks a2, b2 and c2 in table 1. When the wall oscillates, it is known
that the near-wall low-speed streaks cyclically incline to an angle, as visualized by
Quadrio & Ricco (2003). The large local spanwise gradients are then partly converted
to streamwise gradients, thus increasing the resolution requirements in the streamwise
direction. Check a2, in which the streamwise resolution is almost doubled, has yielded
a friction coefficient of Cf = 4.37 × 10−3, with only a −0.4% difference in the drag
reduction. Indeed, the increase in resolution requirements is balanced by the decrease
in the friction Reynolds number caused by the oscillation of the wall. In check b2,
the number of points in the wall-normal direction has been doubled, obtaining a
difference of −0.8%. Lastly, in check c2, the spanwise resolution has been increased
and at the same time a wider computational domain has been considered: in this case
the difference is only −0.3%.

3. Drag reduction results
We have explored the drag reduction characteristics of the oscillating wall by

computing the time-averaged value of the friction coefficient in a reference simulation
at Reτ =200 and in 37 additional computational cases, in which the period T of the
sinusoidal oscillation and its maximum velocity Wm have been varied independently.
The oscillation of the wall is described by a third parameter, namely its maximum
displacement Dm. However, only two of them are independent, since for a sinusoidal
oscillation Dm =WmT/π. The whole set of simulations is documented in table 2 in
terms of the parameters of the oscillation, the measured friction coefficient and the
power budget. The time ti indicates the initial time at which the averaging procedure is
started after the initial transient, cf. § 2.3. The scaling parameter S+ is discussed in § 4.3.

3.1. Absolute drag reduction

The percentage of friction power Psav saved thanks to the oscillation of the walls is
reported in table 2. Psav is defined as follows:

Psav =
UbLxLz

tf − ti

∫ tf

ti

[(
τ

(�)
x,0 − τ (�)

x

)
+

(
τ

(u)
x,0 − τ (u)

x

)]
dt,
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Case T + W+
m D+

m tiUP /h 103Cf %Psav %Preq %Pnet S+

0 ∞ 0 0 0 7.93 −0 0 0 0.0000
1 5 4.5 7 50 7.90 0.3 −54.0 −53.7 0.0142
2 10 2.5 8 100 7.89 0.5 −11.4 −10.9 0.0241
3 15 18 86 100 6.69 15.6 −481.3 −465.7 0.1387
4 30 4.5 43 100 7.33 7.5 −20.8 −13.3 0.1114
5 30 12 115 150 6.21 21.7 −147.9 −126.2 0.1940
6 30 18 172 100 5.77 27.2 −332.8 −305.6 0.2282
7 30 27 258 150 5.39 32.1 −748.6 −716.5 0.2624
8 50 18 286 100 5.21 34.3 −256.6 −222.3 0.2799
9 67 11.3 241 150 5.46 31.2 −87.8 −56.6 0.2482

10 75 4.5 107 100 6.66 16.0 −13.0 3.0 0.1490
11 75 12 286 150 5.36 32.4 −92.9 −60.5 0.2596
12 75 18 430 200 4.89 38.3 −209.1 −170.8 0.3053
13 75 27 645 200 4.58 42.3 −470.3 −428.0 0.3510
14 100 4.5 143 150 6.55 17.4 −11.2 6.2 0.1534
15 100 12 382 150 5.33 32.8 −80.1 −47.3 0.2672
16 100 18 573 200 4.82 39.1 −180.7 −141.6 0.3143
17 100 27 859 250 4.39 44.7 −407.1 −362.4 0.3613
18 125 1.5 60 150 7.62 3.8 −1.0 2.8 0.0261
19 125 3 119 100 7.08 10.7 −4.3 6.4 0.1070
20 125 4.5 179 100 6.57 17.2 −9.9 7.3 0.1544
21 125 6 239 150 6.17 22.1 −17.7 4.4 0.1880
22 125 9 358 150 5.72 27.9 −40.0 −12.1 0.2353
23 125 12 477 200 5.35 32.5 −71.4 −38.9 0.2689
24 125 18 716 200 4.81 39.3 −161.2 −121.9 0.3163
25 125 27 1074 300 4.40 44.5 −363.1 −318.6 0.3636
26 150 4.5 215 150 6.65 16.1 −9.0 7.1 0.1537
27 150 18 859 200 4.91 38.1 −146.8 −108.7 0.3150
28 200 4.5 286 150 6.92 12.7 −7.7 5.0 0.1504
29 200 12 764 200 5.77 27.2 −55.8 −28.6 0.2621
30 200 18 1146 200 5.32 32.9 −126.4 −93.5 0.3082
31 200 27 1719 200 5.11 35.5 −285.5 −250.0 0.3543
32 250 4.5 358 100 7.14 10.0 −7.0 3.0 0.1462
33 300 4.5 430 100 7.29 8.1 −6.4 1.7 0.1420
34 300 18 1719 100 6.62 16.5 −104.7 −88.2 0.2909
35 500 12 1910 100 7.52 5.1 −38.7 −33.6 0.2215
36 500 18 2865 100 7.82 1.4 −89.8 −88.4 0.2606
37 750 12 2865 100 7.91 0.2 −35.7 −35.5 0.1982

Table 2. Power budget data for different oscillatory conditions, namely period T +, maximum
wall velocity W+

m and maximum wall displacement D+
m (case 0 refers to the stationary wall

configuration). ti indicates the start of the time-averaging procedure for the calculation of the
friction coefficient Cf . Psav is the power saved to drive the flow thanks to the wall oscillation,
Preq is the power required to move the walls against the viscous resistance of the fluid, and the
net gain Pnet is given by the algebraic sum of the two. S+ is the scaling parameter discussed
in § 4.3.

where ti and tf mark the beginning and the end of the time-averaging procedure, the
� and u superscripts refer to the lower and upper wall, respectively, the 0 subscript
indicates the fixed-wall case and τx indicates the space-averaged value. In table 2, Psav

is expressed as a percentage of the friction power in the fixed-wall case, given by:

%Psav = 100
Cf,0 − Cf

Cf,0

. (3.1)



Assessment of drag reduction through spanwise wall oscillations 259

0

0

16

7

22

27

32

34

31

16

32

38

42

17

33

39

45

4

11

17

22

28

32

39

44

16

38

13

27

33

35

10 8

16

T +

Wm
+

100 200 3000

5

10

15

20

25

30

100
100

100

100

200

200

200

200

300

300

500

500

500

1000

1000

2000

2000

300

Figure 1. Three-dimensional plot of %Psav versus T + and W+
m . The size of the circles is

proportional to the percentage drag reduction, the numerical value of which is reported inside.
Hyperbolae are curves of constant maximum displacement D+

m . The dashed line is the curve of
optimum period at fixed displacement, discussed in § 4.3. Note that a few measurement points
at high values of T + are not shown in the plot.

Figure 1 is a graphical representation of (most of) the drag-reduction data given
in table 2, and illustrates the dependency of the percentage drag reduction on the
parameters of the oscillation. In the plane of the two considered parameters, i.e.
W+

m and T +, the amount of drag reduction is shown with a circle, its area being
proportional to the numerical value of the percentage reduction, shown inside the
symbol. Lines with constant maximum displacement of the wall are hyperbolae in
this plane. The plot reveals that, for a given value of W+

m , the highest drag reductions
can be attained by keeping T + in the 100–125 range, and that drag reduction appears
to increase monotonically with Wm, for a fixed period of oscillation. Nonetheless, the
increase rate of drag reduction with Wm keeps decreasing. For example, at T + = 125,
the power saved changes from 39% to 44%, with the maximum wall velocity increasing
from W+

m =18 to W+
m = 27, the highest value of Wm tested in this work.

In figure 2, drag-reduction data are reported as a function of T + for three selected
values of W+

m , namely W+
m = 4.5, 12 and 18. These are three sections of the three-

dimensional space shown in figure 1, cut parallel to its horizontal axis. For clarity,
measurements are reported using a logarithmic scale for the T + axis. For the case
dictated by W+

m = 18, an optimum period of oscillation T + = 125 guarantees a drag
reduction of 39.3%. Periods in the 75–150 range yield amounts of about 40%. Drag
reduction appears to increase logarithmically (linearly in log scale) for small T and
to reach a maximum at a period weakly (if ever) dependent on Wm. For lower values
of Wm, the trend is similar, but smaller drag reductions are achieved. As discussed in
§ 3.2, optimum values of T + and small values of W+

m identify an interesting region of
the parameter space, where net energy savings are attainable. Also shown in figure 2
is a subset of the available numerical and experimental data, collected at comparable
values of W+

m . A considerable scatter can be seen, with most of the experimental data
yielding lower amounts of drag-reduction compared to the present measurements.
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Figure 3 shows the percentage drag reductions as function of W+
m for different

values of T +. The drag reduction monotonically increases with W+
m for a given

T +, with an apparent asymptotic behaviour towards a level which seems to depend
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Figure 4. Three-dimensional plot of %Pnet versus T + and W+
m . The size of the circles is

proportional to the percentage net energy balance, the numerical value of which is reported
inside. Only points with positive balance are reported.

on T +. When the period of oscillation is near the optimum value (T + ≈ 125), the
amount of drag reduction asymptotically adjusts to approximately 50%. The highest
computed value of drag reduction is 44.7%, for W+

m = 27 and T + = 100. Again,
open symbols in figure 3 show available data, collected mainly at T + ≈ 100, where the
previously mentioned trend of numerical simulations yielding larger drag-reduction
values compared to experiments is confirmed.

3.2. Net energy saving

For a complete assessment of the oscillating wall as a drag-reduction technique, the
energetic savings must be compared with the energetic cost of moving the walls.
The actual device for wall oscillation can be complex, and it is not our aim to
describe it. In the global power budget, we then disregard mechanical losses, which
are unavoidable in a real-world implementation. In our computational experiments,
we have computed the power Preq required for the movement of the walls, defined as:

Preq =
LxLz

tf − ti

∫ tf

ti

(
τ (�)
z + τ (u)

z

)
Wdt, (3.2)

where W = W (t) is the velocity of the two walls and τz represents the spanwise wall-
averaged component of the wall-shear stress. The required power is given in table 2
as a percentage of the friction power spent in the uncontrolled case. The (algebraic)
sum of the percentage powers %Psav and %Preq is the net energetic balance %Pnet .
This quantity is expressed as savings or losses in the percentage of the friction power
in the uncontrolled case:

%Pnet = %Psav + %Preq .

Figure 4 shows the net percentage saving versus the parameters W+
m and T + of the

oscillation. Only a limited region of the (T +, W+
m )-plane is shown, where the budget is

positive: this occurs for low values of Wm. The region at high Wm gives larger values
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Figure 5. %Pnet as (a) a function of the period of oscillation T +, at W+
m = 4.5, and (b) as a

function of maximum wall velocity W+
m , at T + = 125.

of %Psav , but, as notable in figure 3, the drag reduction increase with Wm is linear
or less than linear, while viscous losses increase quickly with Wm. Indeed, the laminar
analysis by Quadrio & Ricco (2003) suggests a quadratic dependence on Wm, which is
supported by the present data. The maximum saving is located around the optimum
value of the period (i.e. T + ≈ 125) and at small values of the maximum wall velocity,
around W+

m = 4.5.
A better quantitative look at the same data can again be taken by means of sections

of the three-dimensional space, at constant velocity or at constant period. Figure 5 (a)
shows net percentage drag-reduction values as function of T + for W+

m = 4.5. The net
balance is positive for T + > 70 and maximum for T + = 125. The maximum value of
%Pnet is 7.3, which can perhaps be regarded as an interesting high value. We recall
that other passive drag-reduction techniques, for example riblets (Bechert et al. 1997),
are considered interesting from a practical point of view, while providing comparable
values of drag reduction. Figure 5(b) shows how %Pnet varies with W+

m at T + = 125:
we can appreciate that a positive balance occurs for 0 <W+

m < 7.

4. Discussion
The present measurements should be put in the context of already existing data

related to the oscillating-wall technique. In this section, we discuss the open issues
mentioned in § 1, in view of the results reported so far.

4.1. Maximum drag reduction and dependence of drag reduction on the
oscillation parameters

To start the discussion, we again note that all the numerical studies available in the
literature (Jung et al. 1992; Baron & Quadrio 1996; Nikitin 2000; Quadrio & Sibilla
2000; J.-I. Choi et al. 2002) have found that the maximum drag-reduction is of the
order of 40%. The present study is in agreement with this finding. On the other hand,
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Figure 6. Transient behaviour of friction at T + = 125, for different values of Wm. The time
history of the wall-averaged friction is ensemble-averaged over the two walls.

most of the experimental investigations conducted to date (Laadhari et al. 1994;
Trujillo et al. 1997; Choi & Graham 1998) have reported substantially lower skin
friction decrements, quantified at 35%, 27% and 25%, respectively. These differences
are high, indeed larger than the reasonable uncertainty in measurements.

Experiments are typically carried out at values of the Reynolds number slightly
higher than the numerical simulations. The question of whether the drag-reduction
properties of the oscillating wall can be exploited in high-Re flows still requires a defin-
ite answer, but Choi & Graham (1998) have found that, for relatively small variations
of the Reynolds number, the effects should be quite small. Hence, Reynolds-number
effects cannot, by themselves, explain significantly different values of drag reduction.

A further significant difference between laboratory experiments and numerical
simulations is that, in the latter, the moving wall has an indefinite extension, as implied
by the periodic boundary conditions, while in an experiment only a finite section of
the wall is oscillated. It follows that the initial temporal transient after the start-up
of the oscillations must be discarded in numerical simulations, as we have done in
the present work by following the procedure described in § 2.3. In experiments, on the
other hand, the temporal transient does not bear particular significance (provided that
data acquisition is not started at the same time the movement of the wall). However,
the spatial transient must be properly accounted for when deciding the position of the
measuring probe. Only Choi et al. (1998) have measured the local friction coefficient
along the streamwise coordinate, starting from the leading edge of the oscillating
plate. They noted that their oscillating section (3500 viscous lengths) could have been
insufficiently long (it is said to be ‘marginal’ in their paper). Furthermore, they took
most of the measurements 70 viscous lengths downstream of the trailing edge of the
oscillating plate. Their measurements of local friction along the streamwise direction
were taken at the sole oscillating condition of W+

m = 7 and T + = 185.
In the present study, we are limited to addressing the temporal transient. Figure 6

shows the decrease of friction versus time for various computational cases, measured
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from the very beginning of the wall oscillation. It is evident that, for a given T +, the
time required by friction to approach its asymptotic value significantly increases with
W+

m , as recently highlighted by Quadrio & Ricco (2003). A temporal transient can be
converted into a spatial one by using Taylor’s frozen-equilibrium hypothesis, and the
concept of convection velocity. Kim & Hussain (1993) and, more recently, Quadrio &
Luchini (2003) determined a convection velocity of ≈10uτ for the wall-friction
fluctuations. For W+

m = 6, a transient time of t+ = 300–400 can thus be estimated
from figure 6, which implies a transient region of 3000–4000 viscous lengths, in line
with the aforementioned measurement of Choi et al. (1998) at W+

m = 7.
The important point is that, in analogy with the transient time interval of temporal

simulations, the transient length in experiments is expected to increase with Wm. We
can then estimate that the length at W+

m = 18 could be 2–3 times the length at W+
m =6.

Drag-reduction measurements at high values of Wm reported in Laadhari et al. (1994),
Skandaji (1997), Trujillo et al. (1997), Choi et al. (1998, later discussed in Choi 2002)
might then have been conducted not sufficiently downstream from the leading edge of
the oscillating section of the plate. Indeed, in none of the published experiments did
the location of testing along the streamwise coordinate vary, whereas both Wm and
T changed substantially. The testing distance from the leading edge of the moving
walls was 2650 viscous lengths for the measurements described in Choi (2002, where
W+

m up to 16 were tested), 3200 for Laadhari et al. (1994) and Skandaji (1997) (W+
m

up to 16), and 4200 for Trujillo et al. (1997) (W+
m up to 17).

Although the previous analysis suggests that the spatial transient might have caused
biased measurements and, in turn, slightly lower amounts of drag reduction, it does
not adequately explain why discrepancies as high as 20% on the amount of maximum
drag reduction occur between numerical and experimental results. We conjecture that
drag reductions as high as 40% were never measured in the laboratory because the
parameters of the oscillations were never set within the optimal range, which, by
observing figure 1, could be identified by D+

m > 500, 60 <T + < 140 and W+
m > 17.

An additional discrepancy between numerical and experimental studies is that the
latter indicate a monotonic increase of the amount of drag reduction with decreasing
T at fixed Dm. On the other hand, moving towards low values of T + along one
of the hyperbolae at fixed D+

m shown in figure 1, as experimentalists are forced to
do, the amount of drag reduction should first increase and then decrease to zero.
From our data, this is particularly evident in the region of D+

m < 200. We explain
this discrepancy by observing that in none of the experiments were the periods so
low as to exceed the optimum. One case in which perhaps the optimum T has been
experimentally reached is reported by Trujillo et al. (1997), where drag-reduction
starts to decrease after T + ≈ 80 with D+

m = 240. However, the investigators were not
allowed to make any definitive comment, given the small friction decrease compared
with their uncertainty range. Choi & Graham (1998), in a cylindrical pipe flow with
a very long oscillating section, have presented a maximum 25% drag reduction at
Reτ ≈ 530 and Reτ ≈ 800. As already pointed out by Quadrio & Sibilla (2000), the
lower drag-reduction values at high Wm are at least partially due to non-optimal values
of oscillation periods. Similarly to the above-mentioned experimental investigations,
drag reduction kept increasing asymptotically by decreasing the period of oscillation,
for a fixed Dm, so that the existence of a plateau region at low T was proposed. A
sole measured point suggested the existence of an optimal period at T + ≈ 120, but
again the uncertainty range comprised the two highest drag-reduction values, and no
data were acquired at lower oscillation periods. The issue of the optimum T + for
fixed D+

m will be further addressed in § 4.3.
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In concluding this section, we observe that the significant friction increase reported
by Jung et al. (1992) at T + =500 has not been confirmed by our data. The suggestion
put forward by Nikitin (2000) that a small amount of drag reduction could still be
observable at even larger values of T +, namely T + � 1250, is not addressed in the
present simulations, owing to computational costs.

4.2. Net energy saving

The present results demonstrate that a net power saving is attainable by means
of spanwise wall oscillations. This confirms and extends the findings by Baron &
Quadrio (1996) and Quadrio & Sibilla (2000). Although it was on the basis of
preliminary under-resolved calculations, they were the first ones to address the
problem of the global energy budget, by comparing the power saved through the
reduction in streamwise wall-shear stress with the power spent on moving the wall.
Baron & Quadrio (1996) showed that an overall benefit can be achieved for maximum
wall velocities W+

m < 9 and a period of oscillation T + = 100, with a maximum of 9–
10% at W+

m = 4.5. Quadrio & Sibilla (2000), for the turbulent pipe flow, reported
that a net gain of about 5–7% can be attained if T + remains within the 100–150
range. They also remarked that the maximum wall velocity above which the global
energy budget becomes negative is W+

m ≈ 7. The present results compare well with
these findings and hence definitely assess the possibility of a significant net energetic
benefit.

4.3. Scaling of drag reduction

Data in figure 3, corresponding to various combinations of T + and D+
m , indicate that

W+
m is probably the most influential parameter affecting drag reduction: they present

a similar trend and a reasonable collapse, as long as periods not too far from the
optimum are considered. However, it is our opinion that figure 3 does not support the
idea of drag reduction simply scaling with W+

m over the entire range 0 < T + < 750.
The argument on the spatial transient discussed in § 4.1 could explain why some

experimentalists (Trujillo et al. 1997; Choi et al. 1998; Choi & Graham 1998; Choi
2002) support the idea of drag reduction scaling with Wm. An apparent scaling with
Wm might indeed emerge for measurements influenced by the spatial transient, where
drag reduction does not show a significant dependence on T , as verified by Quadrio &
Ricco (2003). For measurements not influenced by transient problems, namely at low
Wm and hence with low drag reductions, it could be that experimentalists considered
the data which showed the optimal period to be within the uncertainty range.

We therefore want to determine a scaling parameter for the amount of drag
reduction which is a function of both W+

m and T + (and, implicitly, of D+
m). The

parameter should account for the effect of the transversal boundary layer created
by the alternate movement of the wall and described by the laminar solution of the
so-called Stokes second problem (Schlichting & Gersten 2000):

w+
(
y+, t+

)
= W+

m exp (−y+
√

π/T +) sin

(
2π

T +
t+ − y+

√
π

T +

)
. (4.1)

The coincidence between the laminar Stokes solution and the turbulent space-
averaged spanwise flow has been verified by Quadrio & Sibilla (2000) for the
cylindrical geometry of pipe flow, and by J.-I. Choi et al. (2002) for the planar
geometry of channel flow. Quadrio & Ricco (2003) have found that this also occurs
during the first instants of the wall motion, if the transient Stokes solution for a wall
set in oscillatory motion is considered.
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J.-I. Choi et al. (2002), starting from the Stokes solution, (4.1), suggested that a
scaling parameter can be constructed by combining a wall-normal length scale �

related to the distance at which the wall oscillation affects the turbulent structures,
and a local spanwise acceleration of the Stokes layer. The critical length scale,
representative of the penetration depth of the Stokes layer into the turbulent flow, is
identified by the requirement that the maximum oscillating velocity at a distance
y+ = �+ from the wall has a magnitude higher than a threshold velocity W+

th ,
representing a typical value of the spanwise turbulent fluctuations. The penetration
depth can then be expressed, thanks to (4.1), as:

�+ =

√
T +

π
ln

(
W+

m

W+
th

)
.

The maximum spanwise acceleration a+
m during the cycle at a given distance y+

from the wall can be easily derived by differentiating (4.1) with respect to t+, and is
expressed by:

a+
m =

2π

T +
W+

m exp(−y +
√

π/T +).

J.-I. Choi et al. (2002) chose (somewhat arbitrarily) W+
th = 0.5, since this value is

within the maximum r.m.s. value of spanwise turbulent fluctuations. They also selected
a+

m at y+ = 5, since the flatness distribution of the streamwise velocity fluctuations
presents a local peak at that distance from the wall. The two quantities �+ and a+

m

can then be united to form a third group:

S+ =
a+

m�+

W+
m

= 2

√
π

T +
ln

(
W+

m

W+
th

)
exp(−y +

√
π/T +). (4.2)

After including the effect of the Reynolds number, J.-I. Choi et al. (2002) found
a reasonably good correlation between the quantity S+ and available drag reduction
data, expressed in the form %Psav = aS+ + bS+2, with a and b being suitable
coefficients determined from a least-squares fit.

The function S+ = S+(T +, W+
m ) described by (4.2) is qualitatively similar to the

drag-reduction plot shown in figure 1: it goes to zero when T + = 0 and T + → +∞
(compare with figure 2), and has a logarithmic behaviour when Wm → +∞ (compare
with figure 3). It presents a maximum w.r.t. T + for fixed W+

m that can be located by
setting ∂S+/∂T +

∣∣
W+

m
= 0. From

ln

(
W+

m

W+
th

)
π

(T +)2
exp(−y +

√
π/T +)

(
y+ −

√
T +

π

)
= 0,

it follows that the maximum of S+ at fixed W+
m is located at T +

opt,W = πy+2. This

corresponds to T +
opt,W = 25π ≈ 78.5 with the choice of parameters by J.-I. Choi et al.

(2002), i.e. not too far from the observed optimal period T +
opt,W ≈ 125.

In the definition, (4.2), of the scaling factor S+, two free constants are present.
Based on physical arguments, we can select y+ to fit the experimental data, since
this distance alone determines the optimum period. If T +

opt,W = 125, it follows that

y+ = 6.3. A value of W+
th of the order of the turbulence fluctuations should then be

around W+
th = 1, as follows from the physical significance of the friction velocity. A

quantitative approach to select the value of the two constants involves determining
the correlation coefficient between the measured drag-reduction data and the scaling
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y+ 5.0 5.5 6 6.1 6.2 6.3 6.4 6.5

W+
th

0.5 0.9777 0.9853 0.9846 0.9837 0.9825 0.9812 0.9797 0.9780
0.75 0.9789 0.9895 0.9923 0.9921 0.9916 0.9910 0.9902 0.9892
1.0 0.9773 0.9897 0.9947 0.9950 0.9951 0.9949 0.9946 0.9941
1.1 0.9761 0.9890 0.9948 0.9952 0.9955 0.9955 0.9954 0.9950
1.2 0.9749 0.9882 0.9945 0.9951 0.9955 0.9958 0.9957 0.9955
1.3 0.9734 0.9871 0.9940 0.9947 0.9952 0.9955 0.9956 0.9955
1.4 0.9719 0.9858 0.9931 0.9939 0.9945 0.9950 0.9952 0.9953

Table 3. Correlation coefficient between drag reduction data %Psav from table 2 (with T + �
150) and the value of S+ from (4.2), as a function of the values of the free constants y+ and
W+

th .
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Figure 7. Drag-reduction data %Psav from table 2 versus the parameter S+, computed with
y+ = 6.3 and W+

th = 1.2. The dashed line is the best fit to the filled circles, with equation
%Psav = 131S+ − 2.7.

factor S+, by systematically changing y+ and W+
th . Table 3 gives these coefficients

(computed only for data with T + � 150, for the reason discussed below). It can be
seen that the values providing the best linear regression of the data (i.e. y+ = 6.3
and W+

th = 1.2) are very close to the values dictated by physical considerations, even
though not coincident with the values used by J.-I. Choi et al. (2002).

The present drag-reduction data are shown in figure 7 versus the parameter S+,
computed with y+ = 6.3 and W+

th = 1.2. The filled circles represent cases with T + � 150,
and the correlation is high: almost all the data fall on a straight line, and the
correlation is much stronger than the nonlinear (and scattered) one reported by
J.-I. Choi et al. (2002). On the other hand, the empty circles, representing data with
T + > 150, are much less correlated. Periods slightly higher than the optimum involve



268 M. Quadrio and P. Ricco

T +

% Psav

100 200 300 400 500 6000

5

10

15

20

25

30

35

40

45

Figure 8. Comparison between %Psav measured at different T + for W+
m = 18, and the

function 131S+(T +, 18) − 2.7.

slight deviations from the straight line, whereas points at higher T + are at a greater
distance. Data in these regions of the parameter space were not reported by J.-I. Choi
et al. (2002).

The scaling parameter S+ then appears not well suited for describing the drag
modifications induced by a wall oscillating with very long period. Another way of
looking at the same concept is reported in figure 8, where the drag reduction at
different values of T + for a fixed W+

m = 18 is compared with the best fit to the
function S+(T +, 18). The agreement is very good for T + � 150. At higher periods,
both functions tend to decrease, but the decrease rate of S+ is much slower than that
exhibited by the data.

We explain the behaviour of drag reduction values for T + > 150 by noting that
the oscillation of the wall tends to become decoupled from the near-wall turbulence
dynamics at high values of T +. In their work on the integral space and time scales
in wall turbulence, Quadrio & Luchini (2003) have shown that a typical pseudo-
Lagrangian time scale can be computed for the near-wall turbulent structures, based
on spatio-temporal correlation data. This characteristic time scale represents a typical
survival time of the longest-lived and statistically significant turbulent structures.
When computed for the longitudinal velocity fluctuations near the wall or for the
longitudinal component of the wall friction, this time scale is about 60 viscous time
units for a value of the Reynolds number very similar to the present one. The
scaling parameter S+ is then linearly related to the amount of drag reduction as
long as the typical interaction time between the oscillating wall and the near-wall
turbulent structures, namely T +/2, is shorter than the typical longitudinal lifetime
of the structures themselves. When T + is too long, the structures have enough time
to develop their inner dynamics between successive sweeps of the transversal Stokes
layer, and enough time is allowed for the near-wall turbulence to readapt to its natural
equilibrium state, thus restoring the unperturbed value of friction drag.

The scaling factor S+ also allows us to address the issue of the optimum period of
oscillation T +

opt,D for fixed D+
m . As previously discussed, it appears that none of the

experimentalists support the existence of such a period, where as our results indicate
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Figure 9. Optimum period of oscillation T +
opt,D as function of D+

m .

that such a period is indeed a property of the oscillating-wall technique. Further, data
in figure 1 suggest that T +

opt,D is lower than T +
opt,W for fixed W+

m (T +
opt,W ≈ 125), although

no definite conclusion can be drawn on whether and how T +
opt,D depends on D+

m . As
the scaling factor S+ is very well linearly related to the amount of drag reduction (for
T + � 150), we determine T +

opt,D by partial differentiation of the analytical expression
(4.2) for S+, after eliminating W+

m = πD+
m/T +. Hence, by setting ∂S+/∂T +|D+

m
=0, we

obtain the following implicit expression for T +
opt,D:(

y+

√
π

T +
opt,D

− 1

)
ln

(
πD+

m

T +
opt,DW+

th

)
= 2, (4.3)

where y+ =6.3 and W+
th = 1.2 guarantee the best linear regression. Differently from

T +
opt,W , which does not depend on W+

m , the period satisfying the above equation is
related to D+

m . Figure 9 shows that T +
opt,D increases monotonically with D+

m , and that
the rate of increment decreases with D+

m . As expected, T +
opt,D is lower that T +

opt,W . In
figure 1, the dashed line represents the locus of points of T +

opt,D , i.e. the solutions of (4.3)
at various D+

m . The predicted values of T +
opt,D agree with the (limited) measurement

points along the hyperbolae of fixed displacement. We also notice that as the value
of T +

opt,D tends to zero (and so does D+
m), the corresponding value of W+

m → W+
th =1.2.

5. Conclusions
We have addressed some open issues related to the drag-reduction properties of

a turbulent channel flow modified by wall oscillations, by carrying out a number of
direct numerical simulations of the Navier–Stokes equations.

Amounts of drag reduction as high as 44.7% have been computed, so that previous
numerical results have been confirmed. The drag reducing properties have been
observed to depend on both the maximum wall velocity and the period of oscillation.
We have provided an explanation for the discrepancies between numerical and
experimental results, based on the analysis of the dependence of drag reduction
on the parameters of the oscillation. Moreover, the possibility of achieving an overall
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positive energy balance has been assessed: a small but definite net energy saving can
be attained, at least for the present value of the Reynolds number.

A parameter has been proposed, a function of both the maximum wall velocity and
the period of the oscillation, which shows a linear correlation with the drag reduction
data. The linear correlation holds as long as the half-period of the oscillation is shorter
than a typical time scale of the flow, related to the survival time of the statistically
significant near-wall turbulent structures. The same parameter also predicts that the
period yielding the maximum drag reduction for fixed maximum wall velocity is
constant, while the optimum period for fixed maximum wall displacement varies with
the displacement itself.

This parameter could serve as a basis for further optimizations of the oscillating wall
technique, aimed at maximizing the global energy budget by adjusting, for example,
the temporal waveform of the oscillation. Before looking into possible applications
of this technique, such optimizations must be investigated, together with the largely
unknown dependence of its performance on the Reynolds number. The issue of the
mechanical power spent in a real oscillating device must also be addressed. It may
also be useful to recall that, in the case of confined flows (a pipeline, for example),
energetic benefits comparable with those from the oscillating wall technique could be
obtained with a small enlargement of the pipe diameter.

However, we emphasize that the fact that such a simple technique for turbulence
control may yield a global energetic gain is a remarkable one. The present technique
requires neither complicated feedback laws nor small-scale sensors or actuators. The
success of the oscillating wall in reducing the turbulent friction with a positive
energetic balance is a significant finding from a physical point of view, if we account
for the strong tendency of turbulence to be attracted by its natural energy-consuming
state.
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the subject and for reading a preliminary version of the manuscript. Part of this work
has been orally presented by P.R. at the 5th Euromech Fluid Mechanics Conference
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and Italian Ministry of University and Research is acknowledged.

REFERENCES
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